Prove that $n^5-n$ is divisible by 30 for every integer $n$.
Proof:
\begin{equation}
n^5-n=(n-1)n(n+1)(n^2+1)\end{equation}\begin{equation} 6|(n-1)n(n+1)\end{equation}So we just need to prove that\begin{equation} 5|(n-1)n(n+1)(n^2+1)\end{equation}When\begin{equation} n\equiv 0,1,2,3,4\mod 5\end{equation},it is easy to verify that\begin{equation} 5|(n-1)n(n+1)(n^2+1)\end{equation}.Done.